1	(a	(i)	(particles) spread to fill total available volume/move from high concentration to low concentration/moves down a concentration gradient (1)	[1]
		(ii)	mass or M_r (1)	[1]
	(b)		helium atoms/molecules are lighter than molecules in air or N_2 and O_2 or helium is less dense than air or N_2 and O_2 . or helium diffuses (through the porous barrier) faster than air or N_2 and O_2 . (1)	[1]
		(ii)	faster rate of diffusion/molecules move faster (at high temperatures). (1)	[1]
	(c)	(i)	$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O (1)$	[1]
		(ii)	would get a mixture of helium and carbon dioxide or would get a mixture of gases	
			or waste of methane/natural gas/fossil fuel (1)	[1]
		(iii)	fractional distillation (1)	[1]
				[Total: 7]

2 (a Any one of:

Fe₂O₃ + 3C → 2Fe + 3CO 2Fe₂O₃ + 3C → 4Fe + 3CO₂ Fe₂O₃ + 3C → 4Fe + 3CO₂ for correct equation (2) not balanced = (1) only

any four of:

coke burns to form carbon dioxide / C + $O_2 \rightarrow CO_2$

this reacts with more carbon to form carbon monoxide / C + CO₂ \rightarrow 2CO

calcium carbonate decomposes to form calcium oxide and carbon dioxide / CaCO_3 \rightarrow CaO + CO_2

calcium oxide / calcium carbonate reacts with silica / silicon oxide / silicon(IV) oxide (in ore) to form calcium silicate / slag / CaO + SiO₂ \rightarrow CaSiO₃ or CaCO₃ + SiO₂ \rightarrow CaSiO₃ + CO₂

the reaction between carbon and oxygen is exothermic / produces heat / coke is used as a fuel / the slag floats on the (molten) iron / the slag and molten iron can be run off separately [6]

(b) (i)	greenhouse effect / CO₂ is a greenhouse gas global warming / ice caps melting / suitable example	[1] [1]
(ii)	burning or combustion of charcoal produces carbon dioxide trees use carbon dioxide (in photosynthesis)	[1] [1]
(iii)	cathode reaction Fe^{3+} + 3e \rightarrow Fe	[1]
	anode reaction $2O^2 \rightarrow O_2 + 4e$ not balanced = (1) only	[2]

[Total: 13]

3	(a	(i)	$Cu(OH)_2 \rightarrow CuO + H_2O$	[1
		(ii)	Rb	[1]
	(b)	(i)	electron loss	[1]
		(ii)	because they can accept electrons	[1]
	(c)	(i)	copper and mercury	[1]
		(ii)	add copper / mercury / metal to (named) acid and no reaction / no bubbles / hydrogen	' no [1]
	(d)	(i)	Mn	[1]
		(ii)	(solution) becomes colourless / decolourises NOT : clear	[1]
			[Tota	l: 8]

(a (i) Sb; 4

- (ii) Xe / B;
- (iii) Sr / Te / A / D;
- (iv) Sn and I / E and F;
- (v) Sr / A;
- (b) any two from:

physical niobium is harder; stronger; higher mp/bp; higher density note: there has to be a comparison

any two from:

chemical

niobium is less reactive; forms coloured compounds; forms complex ions; its compounds have catalytic properties; has more than one oxidation state; has more note: the response has to refer to or compare properties of both elements

[Total: 9]

[5]

[2]

[2]

than one valency electron;

5	(a)	Group II metals will lose 2e Group VI elements will gain 2e	[1] [1]
	(b)	SCl_2 COND 8e around both chlorine atoms 8e around sulphur with 2nbp and 2bp If x and o reversed ignore if this is the only error	[1] [1] [1]
	(c)	lons cannot move in solid or can move in liquid	[1]
	(ii)	No ions in sulphur chloride or it is covalent or only molecules or only strontium chloride has ions	[1]
			TOTAL = 7

(a) (i)	numt	or number of electrons increases or number of electrons more than complete energy level or number of electrons to be lost or accept clear examples NOT just different groups or valencies	[1]
	(ii)	gain electrons number of electrons to be gained is less across period	[1] [1]
		or number of outer electrons increases	
·(b)		Al ₂ S ₃ Si ₃ P ₄	[1] [1]
(c)	(i)	silicon	[1]
	(ii)	sodium	[1]
	(iii)	sulphur or chlorine	[1]
(d)		unreactive or inert or does not react	[1]
(e)		3Na to 1P COND next two marks correct charges	[1] [1]
		8e around P If covalent then only one mark for 3Na to 1P	[1]
(f)	(i)	11.5/23 = 0.5	[1]
	(ii)	0.25 conseq to (i)	[1]
	(iii)	$0.25 \times 32 = 8 \text{ g}$ conseq	[1]
	(iv)	2.0 g only conseq to (iii) if answer to (iii) is less than 10	[1]
		NB If (ii) is 0.3(125), no excess is possible, (iv) ZERO	
	- 1	<i>c</i>	

TOTAL = 16

6